Review and Feedback

Q1) Find $x(2 d p)$:

\square You can find the hypotenuse. (A01)

Name:

Q2) Find x to the nearest $c m$:
You can find the shorter side (A01)

Q3) Find the area of this triangle

\squareYou can do 2 steps Pythagoras problem.(A01)

Q4) Find perimeter of this triangle

\square
You can do 2 steps Pythagoras problem. (A01)

Q5) Here are lengths of sides of four triangles. Which triangle is right-angled?
(A) $5 \mathrm{~cm}, 12 \mathrm{~cm}, 17 \mathrm{~cm}$
(B) $11 \mathrm{~cm}, 11 \mathrm{~cm}, 18 \mathrm{~cm}$
(C) $5 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$
(D) $21 \mathrm{~cm}, 28 \mathrm{~cm}, 35 \mathrm{~cm}$
\square You can do reasoning problem (A02).

Q6) Calculate the distance between A and B.
You can solve more complex problem.

The diagram shows a rectangle made of wire. Find the total
Q7) length of wire used to make the shape (including the diagonal) to 2 decimal places.

\square You can do problem solving question (A03).

Q8) Calculate the length of side p.
Leave your answer in surd form.

You can solve problem with surds.
Teacher's comment ATL Grade:

Review and Feedback

Q1)
Find $x(2 d p)$:

$$
a^{2}+b^{2}=c^{2}
$$

$$
\begin{aligned}
9^{2}+12^{2} & =x^{2} \\
81+144 & =x^{2} \\
x^{2} & =225 \\
x & =\sqrt{225} \\
x & =15 \mathrm{~cm}
\end{aligned}
$$

Name:

Q2) Find x to the nearest cm :

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
x^{2}+6^{2} & =23^{2} \\
x^{2}+36 & =529 \\
(-36) & (-36) \\
x^{2} & =529-36 \\
x^{2} & =493 \\
x & =\sqrt{493}
\end{aligned}
$$

\square You can find the shorter side (A01) $\quad x=22.2 \mathrm{~cm} / 22 \mathrm{~cm}$

Q3) Find the area of this triangle
ANSWER

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
h^{2}+3^{2} & =11{ }^{2} \\
h^{2}+9 & =121 \\
h^{2} & =121-9 \\
h^{2} & =112 \\
h & =\sqrt{112} \\
h & =10.58
\end{aligned}
$$

\square
Area:-
You can do 2 steps Pythagoras problem. (A01)

$$
\frac{b \times h}{2}=\frac{6 \times 10.58}{2}=31.75 \mathrm{~cm}^{2}
$$

Q5) Here are lengths of sides of four triangles.
Which triangle is right-angled?
(A) $5 \mathrm{~cm}, 12 \mathrm{~cm}, 17 \mathrm{~cm} 5^{2}+12^{2} \neq 17^{2}$ hypotenuse. Therefore \subseteq.
(B) $11 \mathrm{~cm}, 11 \mathrm{~cm}, 18 \mathrm{~cm}$

$$
11^{2}+11^{2} \neq 18^{2}
$$

$$
a^{2}+b^{2}=c^{2}
$$

(C) $5 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$

$$
5^{2}+6^{2} \neq 7^{2}
$$

(D) $21 \mathrm{~cm}, 28 \mathrm{~cm}, 35 \mathrm{~cm}$

$$
\left\{\begin{aligned}
21^{2}+28^{2} & =35^{2} \\
441+784 & =1225 \\
1225 & =1225
\end{aligned}\right.
$$You can do reasoning problem (A02).

Q6) Calculate the distance between A and B.

$$
\begin{aligned}
5^{2}+5^{2} & =x^{2} \\
25+25 & =x^{2} \\
x^{2} & =50 \\
x & =\sqrt{50} \\
x & =7.07
\end{aligned}
$$You can solve more complex problem.

The diagram shows a rectangle made of wire. Find the ANSWER
Q7) length of wire used to make the shape (including the diagonal) to 2 decimal places.

$$
\begin{aligned}
\text { All wire used } & =11+11+16.7+16.7+20 \\
& =75.4 \mathrm{~cm}
\end{aligned}
$$

\square You can do problem solving question (AO3).

Q8) Calculate the length of side p.

$$
a^{2}+b^{2}=c^{2}
$$

$$
\begin{gathered}
(\sqrt{6})^{2}+(\sqrt{8})^{2}=p^{2} \\
6+8=p^{2} \\
14=p^{2} \\
p=\sqrt{14}
\end{gathered}
$$

\square
You can solve problem with surds.
Teacher's comment ATL Grade:

