The straight line \mathbf{L} has the equation $3 y=4 x+7$
The point A has coordinates $(3,-5)$

$$
\frac{\mathrm{t}}{\mathrm{ll}}-x \frac{\mathrm{t}}{\varepsilon}-=\kappa
$$

Find an equation of the straight line that is perpendicular to \mathbf{L} and passes through A.
(Total for Question 16 is $\mathbf{3}$ marks)

Summer 2018
The point P has coordinates $(3,4)$
The point Q has coordinates (a, b)
A line perpendicular to $P Q$ is given by the equation $3 x+2 y=7$

$$
\tau+v \frac{\varepsilon}{z}=q
$$

Find an expression for b in terms of a.

Autumn 2017 Paper 2-Calculator Question 19 A triangle has vertices P, Q and R.

The coordinates of P are ($-3,-6$)
The coordinates of Q are $(1,4)$
The coordinates of R are $(5,-2)$
M is the midpoint of $P Q$.
N is the midpoint of $Q R$.
Prove that $M N$ is parallel to $P R$.
You must show each stage of your working.
(Total for Question 19 is 4 marks)

| Ω | | \geq | | 3 |
| :--- | :--- | :--- | :--- | :--- |$|$

$A B C D$ is a rhombus.
The coordinates of A are $(5,11)$
The equation of the diagonal $D B$ is $y=\frac{1}{2} x+6$
Find an equation of the diagonal $A C$.

$$
\mathrm{IZ}+x_{\mathcal{Z}}-=\kappa
$$

```
Autumn 2017 Paper 1 - Non-Calculator Question 19
```


Find an equation for \mathbf{M}.
(Total for Question 19 is 4 marks)
$9 \varepsilon+x \mathcal{Z}=\kappa$

