GCSE Maths Formulae (Higher)

Area of a Rectangle

Area of a Triangle

Area of a **Parallelogram**

base × height = bh

Area of a Trapezium

$$\frac{1}{2} \times (a+b) \times h \text{ eight}$$
$$= \frac{1}{2}(a+b)h$$

Area of a Circle

Circumference of a Circle

Circumference of a

Volume of a Cuboid

*l*ength × *w*idth × *h*eight = lwh

Volume of a Prism

 $=2\pi r$

Volume of a Sphere (Given in relevant questions)

Volume of a Cone

(Given in relevant questions)

$$\frac{1}{3} \times \pi \times r$$
adius $\times r$ adius $\times h$ eight = $\frac{1}{3} \pi r^2 h$

Volume of a Cylinder

area of cross section × length

Surface Area of a **Sphere**

(Given in relevant questions)

 $4 \times \pi \times r$ adius $\times r$ adius $=4\pi r^{2}$

Curved Surface Area of a Cone

(Given in relevant questions)

 $\pi \times r$ adius $\times l$ ength $=\pi rl$

Volume of a Rectangular Based Pyramid

Area of sector:

$$\pi r^2 \times \frac{\theta}{360}$$

Arc Length:

$$\pi d \times \frac{\theta}{360}$$

Trigonometry Formulae

$$Sin A = \frac{opposite}{hypotenuse}$$

$$Cos A = \frac{a \text{djacent}}{h \text{ypotenuse}}$$

Tan
$$A = \frac{opposite}{adjacent}$$

$$\operatorname{Sin} A = \frac{o}{h}$$
, $\operatorname{Cos} A = \frac{a}{h}$, $\operatorname{Tan} A = \frac{o}{a}$

Sine Rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Area of ANY Triangle

Pythagoras' Theorem

Values of Trigonometric Functions

	0°	30°	45°	60°	90°
$\sin\! heta$	0	1/2	<u>1</u> √2	<u>√3</u> 2	1
$\cos\! heta$	1	<u>√3</u> 2	<u>1</u> √2	<u>1</u> 2	0
tan heta	0	<u>1</u> √3	1	√3	not defined

Quadratic Formula

For:
$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Compound Measures: Speed

Compound Measures: Density

Compound Measures: Pressure

Probability

P(A) is Probability of outcome A P(B) is Probability of outcome B

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

 $P(A \text{ and } B) = P(A \text{ given } B)P(B)$

Compound Interest

Principle amount

interest rate

 ${f n}$ umber of times the interest is compounded

Value of Investment = $P(1 + \frac{r}{100})^n$

Angle Rule	Description	Diagram
Angles on a straight line	Angles on a straight line add up to 180° $x+y+z=180$	$x \times z$
Angles at a point	Angles at a point add up to 360° $w+x+y+z=360$	z y x y
Vertically opposite angles		
Corresponding angles	Corresponding angles are equ	al $\xrightarrow{_x}$
Alternate angles	Alternate angles are equal	> y/y >
Co-interior angles	Co-interior angles add up to 180°	$x + y = 180^{\circ}$

Type of quadrilateral	Angle property
Square / Rectangle	All four angles are equal to 90°
Parallelogram / Rhombus	Two pairs of opposite angles are equal
Kite / Arrowhead	One pair of equal angles
Trapezium	Two pairs of co-interior angles (see co-interior angles in parallel lines below)

Sum of Interior Angle for an n-sided polygon $(n-2)\times180^{\circ}$		θ_n	
Exterior angles of polygons	Exterior angles of a polygon add up to 360°		
Interior and Exterior	The interior and exterior angle of any polygon add up to 180°	Interior Angle 120° Exterior Angle 60°	
Angles in a triangle	Angles in a triangle add up to 180°	y z	
Angles in a quadrilateral	Angles in a quadrilateral add up to 360°		
Base Angles of an isosceles triangle are equal.			

Angles in the same segment are equal.	Tangents from an external point are equal in length	Opposite angles of a cyclic quadrilateral add to 180°
		quadrilateral and to 100
1		$a + c = 180^{\circ}$ $b + d = 180^{\circ}$
Angle at the centre of a circle is twice the angle at the circumference.	4	6
2	Tangents to a circle is perpendicular (90°) to the radius .	Alternate segment theorem
Angles in a semicircle are 90°		
3	5	7

Two radii make an isosceles triangle

The perpendicular bisector of a chord passes through the centre of the circle

Straight line graphs y = mx + c

m is positive

m is negative

Quadratic graphs $y = ax^2 + bx + c$

$$\boldsymbol{x}^2$$
 term is positive

 x^2 term is negative

Gradient of **parallel** lines: **Same**

Gradient of perpendicular lines: $m_1 \times m_2 = -1$

Cubic Graphs $y = ax^3$

(Negative reciprocal)

 x^3 term is negative

Exponential Graphs $y = k^x$

A decay curve

Reciprocal Graphs $y = \frac{1}{x}$

Circle Graphs $x^2 + y^2 = r^2$

Its equation is:

$$x^2 + y^2 = 3^2$$

Graphs Transformation

$y = f(x) + a$ $= \binom{0}{a}$	$y = f(x - a)$ $= \binom{a}{0}$
y = -f(x)	y = f(-x)
Reflection in x axis.	Reflection in y axis.

Combined transformation:

The graph of y = -f(-x) are equivalent to a rotation of 180° about the origin.

What is a frequency polygon?

A **frequency polygon** is a graph that shows the frequencies of grouped data. It is a type of frequency diagram that plots the **midpoints** of the **class intervals** against the frequencies and then joins up the points with straight lines.

Below is an example of a frequency polygon, with the associated data table.

Values, x	Frequency
$0 \leq x < 100$	5
$100 \leq x < 200$	10
$200 \leq x < 300$	7
$300 \leq x < 400$	2

Frequency

What is cumulative frequency? Cumulative : up to

Cumulative frequency is the running total of frequencies in a frequency distribution.

The horizontal axis of a cumulative frequency graph is marked with the class intervals from the data set to be plotted on a continuous scale. Data points are plotted on the upper class boundary.

The vertical axis of a cumulative frequency graph is always labelled cumulative

frequency.

Time (minutes)	Frequency
$0 < t \le 10$	1
$10 < t \le 20$	1
$20 < t \le 30$	2
$30 < t \le 40$	3
$40 < t \le 50$	2
$50 < t \le 60$	1

Number of minutes of exercise by a sample of people

Time (minutes)

Reading data from a cumulative frequency graph

Value	Percentage of data below this value
Lower Quartile (LQ or Q1)	25% of the data lies below this value
Median (M or Q2)	50% of the data lies below this value
Upper Quartile (UQ or Q3)	75% of the data lies below this value
x^{th} Percentile	x% of the data lies below this value

Number of minutes of exercise by a sample of people

Time (minutes)

What is a histogram?

A histogram is similar to a bar chart but is used to display quantitative continuous data (numeric data), whereas a bar chart (or bar graph) is used to display qualitative or quantitative discrete data.

Below is a grouped frequency table and the associated histogram.

	Area	= height	× width
Height, cm	Frequency	Frequency Density	Class width
$130 \le x < 140$	2 =	0.2	X 10
$140 \leq x < 145$	5 <u>=</u>	1	× 5
$145 \leq x < 150$	15	3	× 5
$150 \leq x < 160$	8	0.8	× 10
$160 \leq x < 175$	9	0.6	X 15

Height, $x \, \text{cm}$

Inverse Functions:

Find
$$f^{-1}(x)$$
 Q1) $f(x)=\frac{-6x+2}{5x-4}$
$$y=\frac{-6x+2}{5x-4}$$

$$5x-4$$

$$y(5x-4) = -6x+2$$

$$5yx-4y = -6x+2$$

$$5yx+6x = 2+4y$$

$$x(5y+6) = 2+4y$$

$$x = \frac{2+4y}{5y+6}$$

$$y = \frac{2+4x}{5x+6}$$

 $f'(x) = \frac{2+4x}{5x+6}$

Step 1: Let
$$f(x)$$
 be y

Step 2: Make x the subject

Step 3: Swap x and y