GCSE Maths Formulae (Higher)

Area of a Rectangle
length
width

length \times width

$$
=l w
$$

Area of a Circle

$\pi \times r$ adius $\times r$ adius
$=\pi r^{2}$

Area of a Triangle

$\frac{1}{2} \times b$ ase $\times \boldsymbol{h}$ eight
$=\frac{1}{2} b h$

Circumference of a

 Circle
$2 \times \pi \times$ radius
$=2 \pi r$

Volume of a Prism

Volume of a Sphere

(Given in relevant questions)
$\frac{4}{3} \times \pi \times$ radius \times radius \times radius
$=\frac{4}{3} \pi r^{3}$

Volume of a Cone

(Given in relevant questions)
$\frac{1}{3} \times \pi \times r$ adius $\times \boldsymbol{r}$ adius $\times \boldsymbol{h}$ eight
$=\frac{1}{3} \pi r^{2} \boldsymbol{h}$

Area of a Trapezium

Volume of a Cuboid

length \times width \times height

$$
=l w h
$$

$\pi \times$ diameter
$=\pi d$

Area of a Parallelogram

\boldsymbol{b} ase $\times \boldsymbol{h}$ eight
$=\boldsymbol{b} \boldsymbol{h}$

Circumference of a

Circle

area of cross section

area of cross section \times length

Volume of a Rectangular Based Pyramid
$\frac{1}{3} \times$ length \times width $\times \boldsymbol{h}$ eight $=\frac{1}{3} l w h$

Surface Area of a

 Sphere(Given in relevant questions)

$4 \times \pi \times r$ adius $\times r$ adius

$$
=4 \pi r^{2}
$$

Curved Surface
 Area of a Cone

(Given in relevant questions)

$\pi \times$ radius \times length

$$
=\pi r l
$$

Area of sector:
Arc Length:
$\pi r^{2} \times \frac{\theta}{360}$
$\pi d \times \frac{\theta}{360}$

Trigonometry Formulae

$\operatorname{Sin} A=\frac{o \text { pposite }}{\text { hypotenuse }}$
$\operatorname{Cos} A=\frac{a \mathrm{djacent}}{\boldsymbol{h} \text { ypotenuse }}$
$\operatorname{Tan} A=\frac{o \text { pposite }}{a \text { djacent }}$
$\operatorname{Sin} A=\frac{o}{h}, \operatorname{Cos} A=\frac{a}{h}, \operatorname{Tan} A=\frac{o}{a}$
Sine Rule
Values of Trigonometric Functions

	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	not defined

Probability

$P(A)$ is Probability of outcome A
$P(B)$ is Probability of outcome B

$$
\begin{gathered}
\mathbf{P}(\mathbf{A} \text { or } \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{P}(\mathbf{A} \text { and } \mathbf{B}) \\
\mathbf{P}(\mathbf{A} \text { and } \mathbf{B})=\mathbf{P}(\mathbf{A} \text { given } \mathbf{B}) \mathbf{P}(\mathbf{B})
\end{gathered}
$$

Compound Interest

Principle amount

interest rate

number of times the interest is compounded Value of Investment $=\mathbf{P}\left(1+\frac{\mathbf{r}}{100}\right)^{\mathbf{n}}$

Angle Rule	Description	Angles on a straight line add
Angles on a		
straight line 180°		
$x+y+z=180$		

Corresponding angles	Corresponding angles are equal	
Alternate angles	Alternate angles are equal	
Co-interior angles	Co-interior angles add up to 180°	

Type of quadrilateral	Angle property
Square / Rectangle	All four angles are equal to 90°
Parallelogram / Rhombus	Two pairs of opposite angles are equal
Kite / Arrowhead	One pair of equal angles
Trapezium	Two pairs of co-interior angles (see co-interior angles in parallel lines below)

Sum of Interior Angles for an n-sided polygon
$(n-2) \times 180^{\circ}$

For a regular polygon, the size of each interior angle is $(n-2) \times 180^{\circ}$ n

Exterior angles of a polygon add up to 360°

The interior and exterior angle of any polygon add up to 180°

Angles in a triangle add up to 180°

Angles in a quadrilateral add up to 360°

Interior and
Exterior

Angles in a triangle

Angles in a quadrilateral

Sum of Interior Angles for an n-sided polygon $(n-2) \times 180^{\circ}$	For a regular polygon, the size of each interior angle is $\frac{(n-2) \times 180^{\circ}}{n}$	
Exterior angles of polygons	Exterior angles of a polygon add up to 360°	
Interior and Exterior	The interior and exterior angle of any polygon add up to 180°	
Angles in a triangle	Angles in a triangle add up to 180°	
Angles in a quadrilateral	Angles in a quadrilateral add up to 360°	

Base Angles of an isosceles triangle are equal.

Angles in an equilateral triangle are equal.

An exterior angle (of a triangle) is equal to the sum of the internal opposite angles.

The perpendicular bisector of a chord passes through the centre of the circle

Straight line graphs $y=m x+c$

m is positive

m is negative

Gradient of parallel lines: Same

Gradient of perpendicular lines:
$m_{1} \times m_{2}=-1$
(Negative reciprocal)

Cubic Graphs $y=a x^{3}$
x^{3} term is positive

x^{3} term is negative

Quadratic graphs $y=a x^{2}+b x+c$

x^{2} term is negative

Exponential Graphs $y=k^{x}$

A growth curve

A decay curve

Reciprocal Graphs $y=\frac{1}{x}$

Circle Graphs $x^{2}+y^{2}=r^{2}$

The graph of $y=\sin (\theta)$

The graph of $y=\cos (\theta)$

The graph of $y=\tan (\theta)$

Graphs Transformation

$y=f(x)+a$	$y=f(x-a)$
$=\binom{0}{a}$	$=\binom{a}{0}$
$y=-f(x)$	$y=f(-x)$
Reflection in	Reflection in
x axis.	y axis.

Combined transformation: The graph of $y=-f(-x)$ are equivalent to a rotation of 180° about the origin.

What is a frequency polygon? Midpoint

A frequency polygon is a graph that shows the frequencies of grouped data. It is a type of frequency diagram that plots the midpoints of the class intervals against the frequencies and then joins up the points with straight lines.

Below is an example of a frequency polygon, with the associated data table.

Values, \mathbf{x}	Frequency
$0 \leq x<100$	5
$100 \leq x<200$	10
$200 \leq x<300$	7
$300 \leq x<400$	2

Values, x

What is cumulative frequency? Cumulative : up to

Cumulative frequency is the running total of frequencies in a frequency distribution.
The horizontal axis of a cumulative frequency graph is marked with the class intervals from the data set to be plotted on a continuous scale. Data points are plotted on the upper class boundary.

The vertical axis of a cumulative frequency graph is always labelled cumulative frequency.

Time (minutes)	Frequency
$0<t \leq 10$	1
$10<t \leq 20$	1
$20<t \leq 30$	2
$30<t \leq 40$	3
$40<t \leq 50$	2
$50<t \leq 60$	1

Number of minutes of exercise
by a sample of people

Time (minutes)

Reading data from a cumulative frequency graph

Value	Percentage of data below this value
Lower Quartile (LQ or Q1)	25% of the data lies below this value
Median (M or Q2)	50% of the data lies below this value
Upper Quartile (UQ or Q3)	75% of the data lies below this value
$x^{\text {th }}$ Percentile	$x \%$ of the data lies below this value

Number of minutes of exercise by a sample of people

Time (minutes)

What is a histogram?

A histogram is similar to a bar chart but is used to display quantitative continuous data (numeric data), whereas a bar chart (or bar graph) is used to display qualitative or quantitative discrete data.

Below is a grouped frequency table and the associated histogram.

Height, cm	Frequency	Frequency Density
$130 \leq x<140$	2	$=$
Class w		
	5	0.2
$145 \leq x<150$	15	1
$150 \leq x<160$	8	=
\times	10	
$160 \leq x<175$	9	$=$
\times	5	
\times	10	

Height, $x \mathrm{~cm}$

Inverse Functions:
Find $f^{-1}(x)$
Q1) $f(x)=\frac{-6 x+2}{5 x-4}$

$$
y=\frac{-6 x+2}{5 x-4}
$$

$$
y(5 x-4)=-6 x+2
$$

$$
5 y x-4 y=-6 x+2
$$

$5 y x+6 x=2+4 y$
$x(5 y+6)=2+4 y$

$$
x=\frac{2+4 y}{5 y+6}
$$

$$
y=\frac{2+4 x}{5 x+6}
$$

$$
f^{-1}(x)=\frac{2+4 x}{5 x+6}
$$

Step 2: make x the subject
Step 3: Swap x and y

